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On An Optimal Stopping Problem of Gusein-Zade 

By 

A. Q. Frank and S.M. Samuels 
Purdue University 

1.  Introduction. 

Gusein-Zade  [6]  studied the following problem: 

A known number, n, of rankable individuals (rank 1 = best, etc.) 

are to arrive in random order (each of the n! possible arrival 

orderings is equally likely).  The object is to select one of the r 

best individuals  (r is prescribed) using a stopping rule — so 

recalling a previous arrival is not allowed — which is based only 

on the sequence of relative ranks — so, in effect, all that can be 

observed about each arrival is how many of its predecessors are better 

than it.  For each such stopping rule, its risk is the probability 

that it does not select one of the r best individuals, and,'of course, 

the optimal rule is the one with the smallest risk. 

He, in effect, derived an algorithm for computing the optimal rule 

and risk for each r and n  (see Section 2), and obtained some 

asymptotic results, notably that the optimal risk goes to zero as n 

and r become infinite. 

We decided to use the general asymptotic results of Mucci [7] 

to see what happens to the optimal rules and risks, for various values 

of r as n -> 00.  (For r = 1, the risk tends to 1-e" = .6321, as 

is widely known; for r = 2 the limiting risk is .k26k    as Gusein-Zade, 

and also Gilbert and Mbsteller [5] ,  showed. With the help of a computer, as 

described in Section 3,  we obtained these limiting rules and risks for 

r < 25  (see Tables 1 and 2). 



The most suprising feature of our output was how small the risks 

are.  Gusein-Zade's argument showed only that the limiting (as n -* oo) 

risk goes to zero as r •* oo at least as fast as r  In r.  But our 

computations strongly suggested that it goes to zero exponentially fast. 

We say this because we knew that, for each r, the asymptotic risk is 

(l-t, (r))  where t, (r) is the limiting (as n -*• oo) optimal proportion 

of individuals to let go by before being willing to stop; so an exponential 

rate of convergence of the risk is equivalent to t.(r) being bounded 

away from zero and one. Indeed, from Table 1, it appears that t, (r) 

is tending to a limit somewhere near .3« 

Inspired by these computations, and aided by a model which is, 

in effect, the "n = oo" case (see Section U), we succeeded not only in 

proving that the rate of convergence is exponential, but also in 

showing the existence of lim t., (r) = t  and in evaluating this limit 

as well as the entire asymptotic (as n -* oo, r -»oo) form of the optimal 

rule. These results are in Section 5, with proofs in Section 6. 

An extraordinary corollary to the existence of t > 0 is that, 

for large n and r, the optimal stopping rule, say x  , is nearly 

"constant", in the sense that the proportion of individuals seen before 

actually stopping is, with, high probability, negligibly greater than the 

proportion seen before one is even willing to stop. To be precise, 

T  /n •* t  in probability, as r and n go to infinity in an appropriate 

way (see the end of Section 5). 



2.       Preliminaries. 

In this  section we give an algorithm for computing the optimal 

rules and risks in Gusein-Zade's problem for each    n    and    r.    We 

obtain it as a straightforward application of the method of backward 

induction,  as described in Chow,  Robbins and Siegmund   [2],  which 

is slightly different from Gusein^Zade's approach,  via a Markov chain. 

We shall use the following notation: 

P       = optimal probability of selecting one of the    r 
'        best of    n    arrivalsj 

Q       = 1-P       = optimal  (minimal) riskj 

Q      (i) = optimal risk among all rules which do not stop 
' until more than   i    individuals have arrivedj 

H(k~ljr,i,n) = conditional probability that the actual rank of 
the i-th arrival is greater than    r,    given that 
its relative rank at the time of its arrival is 
k. 

Then    H(.jr,i,n)    is just the cumulative hypergeometric distribution 

function 

k     (r)(n'r) 
(2.1) H(kjr,i,n) =    £       J  n

1-3 

3=0 (J) 

and, because the successive relative ranks are independent random 

variables,  the i-th being uniform on    {l,2,...,i},    we are led to the 

algorithm: 

-,     i 
(2.2) Q       (1-1) = ±   £min{Q      (i),  H(k-ljr,i,n)}    i = n,n-l,...,l 

k=l ' 



with the boundary condition 

(2.3) V(n) = 1 

Implicit in the algorithm is the fact that the optimal stopping 

rule stops at the first i (if any) for which the relative rank of 

the current arrival (say k) is small enough so that 

(2.k) H(k-l;r,i,n) < Qn (i) . 

The left side of (2.1+) is decreasing in i while the right side 

is increasing, so, as one would expect, the later the arrival, the less 

stringent is our standard for selecting it. It is convenient to 

designate those times after which the selecting standard is successively 

relaxed. Let m.(n,r), for 1 < j < r be the integer satisfying 

(2.5) 

Q_ _(m.(n,r)) < H(j-l;r,m (n,r),n) 

ft  (m (n,r)+l) > H(j-ljr,m (n,r)+l,n) 

Then the m.'s are increasing in j and the optimal rule may be 
J 

described as: "Let m_(n,r) arrivals go byj then stop at the first 

i > m (n,r), if any, where Z. is the relative rank of the i-th /*. x 
l 

arrival. 

Notice that Q^r = Q^r(0) = Q^r(l) = ••• = Si,r
(mL(n'r))' 

and, from (2.5), 



r-1 m  (n,r)+l r-1 m  (n,r) 
(2.6) TT a -  x n ,    ) < Qn r < TT (i - -^r-) 

j=o D '       j=o n 3 

Now we re-write the algorithm  (2.2) as 

Q       (i)_Q       (i.i) I    [Q       (i)-H(k-l;r,i,n)] + 

(2.7) n'r - n^r  i    =    ** -  
n n 

and note that, if i is allowed to vary with n, then 

i/n-» t 4> H(k-ljr,i,n) •» B(k-1;r, t) 

where B(-jr,t) is the cumulative binomial distribution function 

(2.8) B(k;r,t) = £ (r)  tJ" (l-t)r^ . 

This suggests that,  if we let    i    vary with    n    so that    i/n •» t    as 

n -»oo,     then    Q       (i)    should tend to a limit,     Q  (t),     satisfying the 

differential equation 

(2.9) Q;(t) = ^   £    [<L(t)-B(k-ljr,t)] +   "o<t<l 
r k=l 

with the boundary condition   Q (l  ) =1.    Mucci  (1973) has shown that 

this is true,  for Gusein-Zade's as well as many other risk functions. 

It follows that,  if we let    t.(r) be the "time"  satisfying 
J 

(2.10) Wr)) = B(j--ljr,tj(r)) 

for    j = l,2,...,r,     then 



m (r,n)/n ->tj(r) , 

Q (• )    is constant on    (0,t..(r)],    and 

(2.11) V'VW^ 

= (1-t^r))2 

(in fact, the convergence is monotone:  Q    is an increasing function 
' ö n,r       — 

of n, as Mucci showed). 

Thus, for large n, the optimal rule lets approximately t (r)-n 

arrivals go byj then stops at approximately the first i such that 

i/n > t (r), if any, where Z. is the relative rank of the i-th 
i 

arrival. 

Mien r = 1, all of this is elementary and widely known, 

including the fact that, as n •» oo, 

P 1 i1"^*' = \0-)  = lim i\(n,l)/n . 

Results for r = 2 were given by Gilbert and Mosteller  [5] 

(section 2d) as well as by Gusein-Zade. These include 

m2(n,2)/n ^2/3 ', 

m1(n,2)/n ->cp » .3 ^70 

where    9 - in cp = 1 - an 2/3 j    and hence 

Pn 2 i 1-02= l-(l-9)2 ~ -5736 



3.  Solving the Differential Equation. 

On each interval [t. (r),t. _ (r)],  (2.9) becomes 

£ G(r> = t_1[oQr(t) - 
3l   B(k;r,t)] ; 
k=0 

the solution is 

* _/-,-o.i ^ 3-1 

(3.1)      0, (t) = t5{c - f  u"(j+l) £ B(k;r,u)du} 
J  JO        k=0 

Since the t.'s and c.'s are not known in advance, we must derive 

them, one-by-one, working backwards. 

We use the boundary condition:  Q (l") = 1 and the fact that 

£j , " B(k;r,u) = r(l-t) to get c = r/(r-l), and hence, for r > 1, 

(3.2)       Qr(t) = l-r(t-t
r)/(r-l) ,  tr(r) < t < 1 . 

The boundary condition (2.10), with j = r, becomes 

Qr(tr(r)) = l-t£(r) ; 

substituting (3.2) yields 

(3.3) tr(r) = [r/(2r-l)]
l/(r-l) 

which was derived by Gusein-Zade. 
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Ihe right side of (3.2) is also useful for t < tr(r) because, 

for any t e (0,l), it is the limiting risk of the rules: 

"let [nt] arrivals go by, then stop with the first arrival, if any, 

of relative rank < r".  If we let t = 0(r) with 0(r) -»1 but 

0(r) -^-0, then the right side of (3.2) goes to zero as r -3>co. 

-l/r 
Gusein-Zade used these very rules, with 0(r) = r   , to establish 

that the risks go to zero as n and r become infinite. 

Returning to the differential equation; for j = r-l,r-2,...,1, 

once we know t.,, (r) we can solve for c. in (3.1) — taking 
j+1 «J 

t = t. .j (r) and using (2.10) with j  replaced by j+lj then we can 

solve for t.(r), which, by (2.10), is the root of the equation 
J 

Q (t) - B(j-ljr,t) = 0 with Q (t) given by (3.1). When we reach 

t, (r) we are finished, because, by (2.11),  (l-t.(r))  is the 

limiting risk,  Q . 

These computations have been carried out for r < 25$ some results 

are presented in Tables 1 and 2.  (The same numerical results, for r < 10, 

were obtained by Rasmussen [8], with the sole exception that his t (10) 

is .3128 while ours is  .3129« He, in effect, derived our formula (3-1) 

in its expanded form directly from the finite n problem, without benefit 

of Mucci's differential equation.) 

As we remarked in the introduction, the distinctive feature of 

Table 1-is the apparent convergence of t.. (r) to a non-zero limit, 

which would imply exponential convergence of the limiting risks, 

Q(r),  to zero.  This will be confirmed in Section 5.  (We were, 

however, unable to prove that t (r) is monotone decreasing.) 



TABLE 1 

Limiting Minimal Risk: Q ,  and Optimal Proportion of Arrivals 

to Let Go By Before Considering Stopping:  t   (r)  . 

r 3E 
\(r) 

1 .6321 .3679 

2 .U261+ • 3^70 

3 .2918 .3367 

k .2013 .3302 

5 .1397 • 3255 

6 .0973 .3219 

7 .0679 .3190 

8 . 01*76 .3166 

9 .033^ .3146 

10 .0235 .3129 

li .0165 • 3113 

12 .0116 .3100 

13 .0082 .3088 

r Q r \(r) 

Ik .OO58 .3078 

15 .001+1 .3068 

16 .0029 .3060 

17 .0021 .3052 

18 .0015 .301*1* 

19 .0010 .3038 

20 .0007 .3031 

21 .0005 .3026 

22 .0004 .3020 

23 .0003 .3015 

2k .0002 .3011 

25 .0001 .3008 

00 0 .2834 

Note:     Qr =  [l-t^r)]1" 
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Looking at Table 2, we see that, for each j, t.(r) is decreasing 
J 

with r, but it is not clear — from the table — what the limits are. 

It hardly seems plausible that for each j =  2,3,... 

(3.h) t.(r) - tx(r) »0 as r -£> 00  . 

Yet this is indeed the case; and, as we shall see, it implies the 

extraordinary "almost constant" property, of the optimal stopping 

rule when n and r are large, which was mentioned in the intro- 

duction. 

Although surprising, (3.*0 is not hard to prove. Recall that 

t.(r) is defined by (2.10) and (2.8). Because Q (t) is increasing 

in t while B(j-l;r,t) is decreasing in t,  an upper bound for 

t.(r) is any 0 such that 
J 

B(j-ljr,0) <%.(tx  r)) = (l-t-Jr))1" . 

Hence it is sufficient to show that, for each j > 2, and for any 

S > 0,  (and ignoring r's for which t,(r) > 1-25) 

lim supCl-t^r))"1" B(j-l;r,t1(r)+5) < 1 , 

which is true because, letting 0 = t,(r)+5, 

(l-tl(r))-
r Bu--l5r,0r) = g i (^ ^ [±2^]* 

< A. rJ[l - ^ (r)l  •> 0 as r •» » .  j| 
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k.       The Infinite n Problem. 

A handy tool for deriving asymptotic (r -3>co) results is the 

"infinite n model" as presented in Gianini and Samuels [k] 

and in Gianini [3 ]. 

Let an infinite sequence of rankable individuals arrive at times 

{Y. = arrival time of i-th best) which are IID, each uniformly 

distributed on (0,1).  We want to consider only stopping rules which 

are "based only on relative ranksj" this -ue  achieve, formally, by 

letting 

Y. (t) = arrival time of i-th best among 

those which arrive by t 

S(t) = ü(Y]_(t), Y2(t),...) , 

and allowing only stopping rules which are adapted to the    3(t)'s, 

and either don't stop   (i.e.,   defective rules are allowed) or stop at 

one of the    Y. ' s    For any such rule,  its "r-risk" is  the probability 

that it fails  to stop at one of the times    Y, ,...,Y .     For each    r, 

we wish to minimize the r-risk and to find a rule which does so. 

This problem has been shown to be "the limit"  of Gusein-Zade's. 

Specifically,     Q  (t),     the solution to   (2.9) with the boundary condition 

Q  (l") = 1,    is the minimal r-risk among all stopping rules which do not 

stop before time    t.     Hence,  the optimal rule waits until time    t.. (r), 

then stops at the first arrival time    cr > t„  (r),    where    Z      is the Z .     cr cr 
relative rank of the arrival at time    cr,    and the    t.(r)'s    are as 

defined in   (2.10).     Therefore any asymptotic result we obtain    for the 

13 



infinite    n   problems    as    r •> oo ,    is also an asymptotic result for 

Gusein-Zade's problems,   as first    n ->• oo ,     then   r-> oo . 

5.       Asymptotic Results  for the Infinite    n    Problem. 

First we shall establish that the optimal    r-risks,     Q ,    go to 

zero exponentially fast.    This will be in two parts: 

(5-1) Q    > 2*r      for all      r = 1,2,. 

and 

(5.2) lim sup <^(t)l/r <   infQ<a<t    max{ta,   (|)°   (j^)1^)   , 

for all    t  e  (0,1). 

The first part shows that the rate is at most exponential; the second 

that it is at least exponential. 

Because Q^ = (l-t^r))1", (5.1) and (5-2) imply 

(5-3) l-inf0£0,£t£1max{ta,   (|)   (^)      } 

< lim inf t, (r) < lim sup t.(r) < p  . 

The expression in the curly brackets in (5.2) and (5-3) will be 

shown to be the limit of the r-th roots of the r-risks of the rules: 

"wait until time t, then stop with the first arrival of relative 

rank < or,", which are of some interest in themselves — especially 

to see how they compare with the optimal rules.  So we have computed 

14 



some values which are presented in Table 3-  For each listed a-value, 

we have used the optimal t-value (the t which makes the two terms 

in the curly bracket equal).  It can be seen that the optimal  (t,a) 

pair is t ~ .591 , a ~  .309 and the left side of (5.3) is about 

1 - .85 = .15. 

Once the exponential rate of convergence is established it will 

be possible to give the complete asymptotic form of the optimal rule 

l/r and to derive the limit of Q  .  To describe the results we need to r 

define the functions 

(5.10 ar(t) = j/r if t = t.(r) 

= 0 if t = 0 

= 1 if t = 1 

linear in between; 

so the optimal rule for getting one of the r best can be stated 

as:  stop at the first arrival time t at which the relative rank 

of the current arrival is < a (t)«r . What we shall show is that 

l/r t, (r), a (t), and Q (t)   have limits related in this way: 

(5-5) t-^r) ->t* 

(5.6) <*r(t) *a(t) 

(5-7) 

r 
Qr(t)

l/r * 

(i-t*) if t < t* 

(t f(t)    i-t yl-a(t)   if t>t, 

15 



TABLE 3 

Limit of r-th Roots of r-Risks, Q , of the Rules: 
'  r 

"Select First Arrival After Time t(a) with 

Relative Rank < ar" 

t(a) 

.3032 

.U650 

.5822 

.5903 

• 5913 

• 5923 

.67^3 

.7500 

a 

.10 

.20 

.30 

.308 

.309 

.310 

.14-0 

.50 

lim Q; IA 

.8875 

.8580 

.8502 

.8501396 

.8501389 

.850139^ 

.85it-l 

.8660 

Note : t(a) = l-(l^)aa/^) 
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where 

(5.8) a(t) =0 for    t < t* 

t* from 0 to 1 as t /from t* to 1 

and,  on    (t*,l),    «(•)    is a solution to the differential equation 

(5'9) a (t) sin{t[i-a(t)J/(i-t)a(t)J ' 

This enables t  to be numerically evaluated. We found that t ~ . 283U. 

We have also evaluated <3(t) for various values of t > t  (see 

Table h).     It is true enough that these values help to characterize the 

asymptotic form of the optimal rules.  But there is less here than meets 

the eye, for the fact is that, for any t > t"*,  and for large r, the 

optimal rule for getting one of the r best — call it T — will 

already have stopped by time t, with high probability.  In other words, 

as we shall show: 

(5.10) T •» t  in probability as r •> 00 

This implies, that for each € and 8 > 0 there is an r(e,5),  and, 

for each r > r(e,&),  an n(r, e,g),  such that 

n > n(r,e,5) S>P(|T _/n-t*| > S) < e 
1 }n 

where T    is the optimal rule for selecting one of the r best of r, n 

n arrivals.  (This clarifies the remark at the end of the introduction.) 

17 



TABLE it- 

Asymptotic Form of the Optimal Rules For the Infinite-n Problem, 

as r Becomes Infinite:  "Stop at Arrival Time t > t* ~  .2831+ 

Only if Relative Rank < a(t)-r" 

t a(t) 

2835 .00001 

281+0 .0001 

2850 .0003 

29 .001 

30 .001+ 

35 .021+ 

ko .053 

^5 .088 

50 .130 

55 .179 

60 .236 

t a(t) 

.65 .300 

.70 .373 

.75 .h5k 

.80 .5^3 

.85 .6te 

.90 • 751 

.95 .870 

.96 .895 

.97 .921 

.98 • 9^7 

.99 • 973 
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6.  Proofs of Results in Section 5» 

Proof of (5.1):  The first step is to show that, for each r > 1, 

(6.1) Qr > t1(r)Qr_1 . 

To see this,  look at the r-risk only on the event that the overall best 

individual arrives before time    t.. (r),     an event of probability    t, (r). 

Since the optimal rule does not stop before time    t.. (r),     its conditional 

risk on this  event is its probability of failing to select one of the 

r-1   best of the remaining individuals   (other than the   overall best); 

and, most important,  on this event the optimal rule is based only on 

the relative ranks of the reamining individualsj it is:    "Wait until 

tQ(r),     then stop at the first arrival time    cr > t„    , (r),    where    Z 
a 

is the relative rank of the arrival at time    cr,    with respect to all 

previous arrivals other than the overall best."    Now the arrival times 

of all individuals other than the overall best are themselves IID, 

uniform on     (0,1)    and independent of the arrival time of the overall 

best; hence the conditional r-risk is at least    Q.    , (t.. (r)),    which,  in 

turn,  is at least    Q    .,. 
' r-1 

Now suppose that, for some r,  t, (r) > l/2.  Then Q > [1-t.. (r)]Q  , 

but, since, for each k,  (l-t, (k)) = Q.,    this is equivalent to 

t» (r-l) > t,(r). Hence t,(r-l) > l/2.  But this leads to a contradiction, 

because t^l) = e~ < l/2.  Therefore t (r) < l/2 for all r, which is 

equivalent to (5.1). 

19 



We shall need the following: 

(6.2) Q(rjt) > tr for all      t  e   (0,1) 

> (l-t)r      for all      t e(t1(r),l)  . 

The first inequality holds because    t      is the probability of the event: 

"all of the    r best arrive before time    t",    in which case any rule 

which doesn't stop before time    t    cannot possibly select one of the 

r    best.     The second inequality holds because,  when    t > t.. (r),    we have 

Q(r;t) > QKrjt-^r)) =  (l-t^r))1" >  (l-t)1 

We shall also need to use the following fact about binomial 

probabilities: 

<^>      ^r^(<[ar]>
t[arl<1-*>r-[ar,'l/r 

4. a T_4- 1-a 

A) (B} if oi«^1 

l/r 
lim .  B([ar];r,t) if 0 < a < t . 

r -&• oo —  — 

The first equality follows immediately from Stirling's formula; the 

second follows from the first and the inequality. 

(^d-t^/g^a-t)'*1 

Wt¥<   3^¥« *<M 
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which implies that 

(6.10   B([Or]ir,t) < (l-^^i^t^il-tf-^ 

whenever a  < t. 

Proof of (5-2):    Fix    t    and let    X   be the actual rank of the 

[ccrj-th best of those which arrive by time    t,    and    Q (t,cc)    be the 

r-risk of the rule:  "accept the first arrival after time    t,    with 

relative rank < a.?, if any".     If    [ar] < X < r+l,  then this rule will 

surely select one of the    r    bestj while if    X = x > r+l,     then the 

conditional probability of selecting one of the    r    best can be shown 

to be    r/(x-l)    which is at most    r/(r+l).    Hence 

(6.5) P(X= [ar])+P(X > r+1) > Qr(t,a) 

> p(X» [ar]) +  (r+l)"1 P(X > r+l) . 

Now 

p(X=[ar]) = t[ar] 

and 

P(X > r+l) = B([ap]-1;  r+l,t)  J 

so when we take    the r-th root of all sides of  (6.5),  let    r -»00, 

and apply  (6.3), we find that both the upper bound and the lower 

l/r bound for    ^(t^o;) converge to the expression in the curly bracket 

in  (5.2).     Since the optimal rules must do at least as well as these, 

(5.2) must hold.   || 
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We note for future reference that,  for fixed    t  e  (0,1), 

(6.6) (£)     (—•)  •** f from 1-t to 1 as a f from 0 to t 

Now let us use the notation  (5.4) to re-write the differential 

equation  (2.9) as 

[rOr(t)] 

(6.7) Q'(t) = t_1{ra  (t)ft (t) -       £       B(k-l;r,t)} 
r k=l 

and note that 

(6.8) B([r ar(t)]-ljr,t) < Qr(t) < B([r ar(t)];r,t)   . 

Derivation of  (5.5)-(5.9):    Re-writing  (6.7) in terms of 

5r(t) - Qr(t)
l/r , 

yields 

(6-9) g;(t) =  (rt)_1[r ar(t)]gr(t)(l-hr(t)) 

Where 

[ra  (t)] r 
($.10)       h(t) = T     B(k-l:r,t)/[ra  (t)]B([r a  (t)]-l;r,t) E   B(k-1: 

10 

It can be shown, using  (6.4) and the unimodality of the binomial distri- 

bution,  that 
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0 < ß <a<t=> B([rß];r,t)/B([ia]jr,t) »0 as r -> 

Hence h (t) -»0 as r •» oo whenever a (t) ->Gii(t) e (0,t). 

Choose any weakly convergent subsequence, 

w 
gr (•)  -» g(-) 

i 

By (6.2) we have, necessarily, 

g(t) > max(t,l-t) on (t*,l) 

where 

(6.11)      t* = lim t1(rj.) = inf{t: g(t) > g(0
+)} > 0 

and g(t ) = 1-t*. Hence by (6.6) we can represent g(t) in the form 

(6.12) g(t) =   1-t* if 0 < t < t* 

t  a(t)     l-a(t) 

-^    (i^w)       if *#<*<i 

with   «(t) < t    and increasing from   0    to    1    on    (t*,l). 

And,  from (6.3),   (6.6),  and  (6.8),  it follows that, necessarily, 

w 
ar (•) -> a(.) 

i 
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Hence, from (6.9), 

g* (t) ^t"1 a(t)g(t) a.e. (t) j 
r. 
1 

and since the g'(•)'s are uniformly bounded (recall that g'(t) = 0 

on (0,t (r)) and t (r. ) •» t* > 0), we can apply the dominated 

convergence theorem to conclude that g(«) is differentiable with 

1 
(6.13) g'(t) = t"x a(t)g(t) on (t*,l) 

•*> 

= 0 on (0,t ) 

(6.1*0 g(l) = 1 • 

Since this is true for every weakly convergent subsequence, and since 

the differential equation with the boundary condition uniquely determines 

g(« ),  including the value t , we conclude that 

l/r 
Qr(t) '     ->g(t) as r -»co , 

where g(« ) is implicitly defined by (6.12), (6.13), and (6.1*0. 

Re-writing (6.13) in terms of &('),    using (6.12), yields 

(5-9).  II 

Proof of  (3.10):    We first note that,  for any    j    and    t > t.(r), 
J 

T  is less than t on the event: "at least one of the j best arri- 

vals by time t has arrived after time t.(r)". This event has 
d 

probability l~[t.(r)/tr and is independent of 3(t.(r)). Hence, for 

any 6 > 0, 
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P(xr > t1(r)+5) < infj>1{tj(r)/t1(r+8)}
;] . 

The right side goes to zero as r •> oo, by 0.k),  and t.. (r) •> t*, 

which completes the proof.  || 

7.  Concluding Remarks. 

A. The policy: "Observe only the first ITL (r,n) applicants, then 

choose the best of these" has probability approximately (l-t.,(r))  of 

selecting one of the r best of all n applicants. The optimal stopping 

rule based only on relative ranks has virtually the same risk as this 

policy for all n and r, and, for large n and r, stops nearly as 

soon as this policy does — if we are willing to ignore "times" of 

smaller order than n — according to (5.10). 

B. The limiting optimal proportion of individuals to let go by 

before being willing to stop (as n ->oo) is nearly.37 in the classical 

best choice problem (r = l), and, as we have shown, tends to about 

.28  as   r -»oo.  In the so-called "rank problem", where the object 

is to minimize the expected rank of the individual chosen, the limiting 

optimal proportion to let go by is  |' | _ ^ • ^      Ü/Ü+2)}       which 

is slightly less than -26, as shown in Chow, Moriguti, Robbins, and 

Samuels [1] .   And in a problem where the n observations are not 

relative ranks, but are IID, uniformly distributed on an unknown interval, 

and the object is to minimize the expected quantile of the observation 

_ -I/V2' 
chosen, the minimax rule, as n •»<», lets approximately (3 + 2y2 )     . n, 

or about  29/0  of the observations, go by before being willing to stop, 

as shown in Samuels  [10]. 
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C. The  completely random order of arrivals is crucial. If the 

actual ranks of the successive arrivals were cyclical: 

Z,  Z-\,...,2,  1, n, n-l,...,Z+l , 

with Z equally likely to be 1,2,...,    or n,    then no stopping 

rule based on relative ranks has probability greater than r/n of 

selecting one of the r best. And since the randomized rule "r = k 

with probability l/n, for k = 1,2,... ,n,  regardless of the data" 

has this success probability for every arrival ordering, the cyclical 

ordering above may be called an optimal counter strategy. For another 

optimal counter strategy, see Samuels [9]. 
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